Радиофотонная РЛС

Радиофотонная РЛСрадиолокационная станция (РЛС), аппаратура которой выполнена на основе радиофотонных технологий, предполагающих использование радиочастотной модуляции/демодуляции оптических (фотоны) несущих сигналов[1]. Это позволит повысить дальность действия и разрешающую способность, создавать трёхмерные портреты целей.

Содержание

Варианты реализации радиофотонных технологий

Первоначально идея использования радиофотонных технологий в РЛС сводилась к оптоволоконной разводке тактовых импульсов АЦП по множеству приёмных каналов. При этом для срабатывания АЦП оптические импульсы должны были преобразовываться в тактовые видеосигналы с помощью фотодетекторов[2]. Такое техническое решение, к примеру, позволяло преодолевать проблемы передачи тактовых сигналов АЦП через вращающееся контактное сочленение от неподвижной аппаратуры несущей платформы на вращающуюся цифровую антенную решётку.

В настоящее время развитие радиофотоники позволяет использовать оптоволоконный интерфейс также для передачи излучаемых или принятых антенными элементами радиосигналов[1] и их обработки[3].

Следующий шаг — внедрение радиофотонных технологий в радиосвязь, что ожидается уже в системах связи 6G.[4] Кроме того, данный принцип может быть реализован в комплексах ультразвуковой диагностики.

Квантовые РЛС

В наиболее оптимистичных прогнозах радиофотонные технологии могут быть реализованы в РЛС с использованием принципов квантовой запутанности, как во внутриаппаратных интерфейсах, так и для локации пространства (так называемые квантовые РЛС [5]).

Другой разновидностью квантовой РЛС является вариант радара, разработанный в университете Йорка и использующий квантовую корреляцию между радиоволновыми и оптическими лучами, формируемую с помощью наномеханических осцилляторов[3].

См. также

Примечания

  1. 1 2 Шумов А. В., Нефедов С. И., Бикметов А. Р. Концепция построения радиолокационной станции на основе элементов радиофотоники / Наука и Образование. МГТУ им. Н.Э. Баумана. - Электронный журнал - 2016. - № 05. - С. 41–65. - DOI: 10.7463/0516.0840246
  2. Слюсар В. И. Влияние нестабильности такта АЦП на угловую точность линейной цифровой антенной решётки // Известия высших учебных заведений. Радиоэлектроника.- 1998. - Том 41, № 6.- С. 77 - 80.
  3. 1 2 Quaranta P. Radar technology for 2020. // Military technolodgy. – 2016. – № 9(48). – Р. 86 – 89.
  4. David, K., & Berndt, H. (2018).6G Vision and Requirements: Is There Any Need for Beyond 5G? / IEEE Vehicular Technology Magazine, September 2018. - doi:10.1109/mvt.2018.2848498
  5. John Hewitt. Quantum radar can detect what’s invisible to regular radar. - 2015. [1]

Литература

  • Малышев А. С. Волоконно-оптические лазерные и фотодиодные модули СВЧ-диапазона и системы радиофотоники на их основе. [2]
  • Светличный Ю.А., Дегтярев П.А., Негодяев П.А. Схемы и компоненты перспективных радиотехнических систем с цифровыми фазированными антенными решётками // Материалы научно-технической конференции молодых учёных и специалистов «Научные чтения к 90-летию со дня рождения академика В.П. Ефремова». Москва 19 сентября 2016 г.[3]

Ссылки