Теория возмущений

Теория возмущений — метод приближенного решения задач теоретической физики, применимый в том случае, когда в задаче присутствует малый параметр, причём в пренебрежении этим параметром задача имеет точное решение.

Физические величины, рассчитанные по теории возмущений, имеют вид ряда

где — решение невозмущённой задачи, — малый параметр. Коэффициенты находятся путём последовательных приближений, то есть выражается через . Применяется в небесной механике, квантовой механике, квантовой теории поля и т. д.

В небесной механике

Исторически, первой дисциплиной, в которой была разработана теория возмущений, была небесная механика. Задача нахождения движения планет Солнечной системы есть задача   тел, которая, в отличие от задачи двух тел, не имеет точного аналитического решения. Её решение, однако, облегчается тем, что ввиду малой массы планет, притяжение планет к друг другу намного слабее, чем притяжение их Солнцем. В пренебрежении массами планет задача сводится к   независимым задачам двух тел, которые решаются точно; каждая планета движется в поле тяготения Солнца по эллиптической орбите согласно законам Кеплера. Это есть решение невозмущённой задачи, или нулевое приближение. Силы, действующие со стороны других планет, приводят к искажению, или возмущению этих эллиптических орбит. Для вычисления траектории планеты с учётом возмущения применяется следующий метод.

Положение планеты в пространстве и её скорость можно задать при помощи шести величин (по числу степеней свободы): большая полуось и эксцентриситет орбиты, наклонение орбиты её к плоскости эклиптики, долгота восходящего узла, долгота перигелия и момент прохождения через перигелий. Эти величины (обозначим их для простоты  ) выгодно отличаются от декартовых координат и компонент скорости тем, что для невозмущённого движения они постоянны:

 

поэтому уравнения движения планеты, записанные через них, содержат малый параметр в правой части:

 

Ввиду этого, решать уравнения движения удобно методом последовательных приближений. В первом приближении подставим в правую часть решения невозмущённого уравнения, и найдём:

 

Для нахождения второго приближения подставляем найденное решение в правую часть (*) и решаем получившиеся уравнения и т. д.

В квантовой механике

Теория возмущений в квантовой механике применяется в том случае, когда гамильтониан системы можно представить в виде

 

где  невозмущённый гамильтониан (причём решение соответствующего уравнения Шрёдингера известно точно), а   — малая добавка (возмущение).

Стационарная теория возмущений

Задача состоит в нахождении собственных функций гамильтониана (стационарных состояний) и соответствующих уровней энергии. Будем искать решения уравнения Шрёдингера для нашей системы

 

в виде разложения в ряд

 
 

где   и   — волновые функции и энергетические уровни невозмущённой задачи

 

а число   нумерует энергетические уровни.

Подставляя (***) в (**), с точностью до членов первого порядка по возмущению получим

 

Домножая слева на  , и учитывая, что   — (ортонормированные) собственные функции невозмущённого гамильтониана, получаем

 
 

где   — матричные элементы возмущения.

Вышеизложенная процедура работает, если невозмущённый уровень   невырожден. В противном случае для нахождения поправок первого порядка необходимо решать секулярное уравнение.

Аналогичным образом находятся поправки следующих порядков, хотя формулы сильно усложняются.

Нестационарная теория возмущений

В квантовой теории поля

Большинство вычислений в квантовой теории поля, в частности, в квантовой электродинамике (КЭД), также делаются в рамках теории возмущений. Невозмущённым решением являются свободные поля, а малым параметром — константа взаимодействия (в электродинамике — постоянная тонкой структуры  ). Для представления членов ряда теории возмущений в наглядной форме используются диаграммы Фейнмана.

В наше время многие вычисления в КЭД не ограничиваются первым или вторым порядком теории возмущений. Так, аномальный магнитный момент электрона в настоящее время (2015) вычислен до 5-го порядка по   [1].

Тем не менее, существует теорема о том, что ряд теории возмущений в КЭД является не сходящимся, а лишь асимптотическим. Это означает, что, начиная с некоторого (на практике — очень большого) порядка теории возмущений согласие между приближённым и точным решением будет уже не улучшаться, а ухудшаться[2].

Примеры неприменимости теории возмущений

Несмотря на свою кажущуюся универсальность, метод теории возмущений не срабатывает в определённом классе задач. Примерами могут являться инстантонные эффекты в ряде задач квантовой механики и квантовой теории поля. Инстантонные вклады обладают существенными особенностями в точке разложения. Типичный пример инстантонного вклада имеет вид:

 , где   — малый параметр.

Эта функция является неаналитичной в точке  , а потому не может быть разложена в ряд Маклорена по  .

Примечания

  1. E. de Rafael. Update of the Electron and Muon g-Factors // arXiv:1210.4705 [hep-ph]
  2. Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. — М.: Наука, 1981. — С. 210—212.

Литература