Функция Хевисайда

Единичная функция Хевисайда. При x = 0 доопределена значением 1.

Фу́нкция Хевиса́йда (едини́чная ступе́нчатая функция, функция едини́чного скачка, включённая едини́ца, «ступенька») — кусочно-постоянная функция, равная нулю для отрицательных значений аргумента и единице — для положительных[1]. В нуле эта функция, вообще говоря, не определена, однако её обычно доопределяют в этой точке некоторым числом, чтобы область определения функции содержала все точки действительной оси. Чаще всего неважно, какое значение функция принимает в нуле, поэтому могут использоваться различные определения функции Хевисайда, удобные по тем или иным соображениям[⇨], например:

Функцию Хевисайда легко записать, используя скобку Айверсона:

Функция Хевисайда широко используется в математическом аппарате теории управления и теории обработки сигналов для представления сигналов, переходящих в определённый момент времени из одного состояния в другое. В математической статистике эта функция применяется, например, для записи эмпирической функции распределения. Названа в честь Оливера Хевисайда.

Функция Хевисайда является первообразной функцией для дельта-функции Дирака, , это также можно записать как:

Содержание

Дискретная форма

Можно определить дискретную функцию Хевисайда как функцию от целого аргумента  :

 

где   — целое число.

Дискретный единичный импульс является первой разностью дискретной функции Хевисайда:

 

Аналитические формы

Для более удобного использования функцию Хевисайда можно аппроксимировать с помощью непрерывной функции:

 

где большему   соответствует более крутой подъём функции в точке  . Задавшись необходимой шириной области перехода функции Хевисайда  , значение   можно оценить как  .

Если принять  , уравнение можно записать в предельной форме:

 

Существует несколько других аппроксимаций непрерывными функциями:

 
 

Запись

Часто используется и бывает полезной интегральная форма записи единичной функции:

 

θ(0)

Значение функции в нуле часто задаётся как  ,   или  .   — наиболее употребительный вариант, поскольку по соображениям симметрии в точке разрыва первого рода удобно доопределять функцию средним арифметическим соответствующих односторонних пределов, кроме того в этом случае функция Хевисайда связана с функцией знака:

 

Значение в нуле может явно указываться в записи функции:

 

Преобразование Фурье

Производная функции Хевисайда равна дельта-функции (то есть функция Хевисайда — первообразная дельта-функции):

 .

Следовательно, применив преобразование Фурье к первообразной дельта-функции  , получим её изображение вида:

 

то есть:

 

(второй член — соответствующий нулевой частоте в разложении — описывает постоянное смещение функции Хевисайда вверх; без него получилась бы нечётная функция).

История

Эта функция использовалась ещё до появления её удобного обозначения. Например Гульельмо Либри[en] в 1830-х годах опубликовал несколько работ[2][3] посвященных функции  . По его мнению,   равен 0, если  ; 1, если   (см. Ноль в нулевой степени); или  , если  . Таким образом Либри заключает, что   равняется 1, если  , и 0 в противном случае. Пользуясь нотацией Айверсона это можно было бы записать, как

 

Однако такой нотации в то время не было, и Либри считал достижением, что эту функцию можно выразить через стандартные математические операции. Он использовал эту функцию, для выражения абсолютной величины (обозначения   тогда ещё не было, оно было введено позже Вейерштрассом) и индикатора таких условий как как  , и даже «  является делителем  »[4].

См. также

Примечания

  1. В теории автоматического управления и теории операторов Лапласа часто обозначается как  . В англоязычной литературе часто обозначают   или  . См., например,
    • Волков И. К., Канатников А. Н. Интегральные преобразования и операционное исчисление: Учеб. для вузов / Под ред. B. C. Зарубина, А. П. Крищенко. — 2-е изд. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. — 228 с. — (Математика в техническом университете; Вып. XI). — ISBN 5-7038-1273-9.;
    • Методы классической и современной теории автоматического управления: Учебник в 5-и тт.; 2-е изд., перераб. и доп. Т. 1: Математические модели, динамические характеристики и анализ систем автоматического управления / Под ред. К. А. Пупкова, Н. Д. Егупова. — М.: Издательство МГТУ им. Н. Э. Баумана, 2004. — 656 с. — ISBN 5-7038-2189-4 (Т. 1).
  2. Guillaume Libri. Note sur les valeurs de la fonction 00x, Journal für die reine und angewandte Mathematik 6 (1830), 67-72.
  3. Guillaume Libri. Mémoire sur les fonctions discontinues, Journal für die reine und angewandte Mathematik 10 (1833), 303—316.
  4. Donald E. Knuth, Two notes on notation, Amer. Math. Monthly 99 no. 5 (May 1992), 403—422 (arXiv: math/9205211 [math.HO]).